
Unsupervised Cross-Domain Image Generation
Girish Chandar G
IIT Gandhinagar

girish.chandar@iitgn.ac.in

S Deepak Narayanan
IIT Gandhinagar

deepak.narayanan@iitgn.ac.in

Sammed S Kagi
IIT Gandhinagar

sammed.shantinath@iitgn.ac.in

Shivji Bhagat
IIT Gandhinagar

shivji.bhagat@iitgn.ac.in

ABSTRACT
We address the problem of unsupervised general domain transfer
by analysing and implementing a modified version of the method
suggested in [1]. We use a modified GANs architecture to transfer
image samples from one domain to another. Specifically, two differ-
ent image domains were explored : Face and Digits. We were able
to obtain qualitatively and quantitatively appealing results in case
of digits transfer.

KEYWORDS
general domain transfer, Generative Adversarial Neural Networks
(GANs), feature encoder

ACM Reference format:
Girish Chandar G, S Deepak Narayanan, Sammed S Kagi, and Shivji Bhagat.
2019. Unsupervised Cross-Domain Image Generation. In Proceedings of
IIT Gandhinagar’s ML Course, Gandhinagar, India, Spring 2019 (Machine
Learning), 5 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Humans have inherently had the expertise in mapping different do-
mains with very little supervision. This is something that machines
have thus far not had great success at. To clarify on what a domain
is, exactly we'd like to take this example of two different types of
images here. The images on the first column are said to belong to
one domain (printed numbers) while those on the second column
are said to belong to another domain (handwritten numbers).

This work tries to progress towards the ultimate goal of Artificial
General Intelligence by attempting to solve this non-trivial prob-
lem. One potential application we would have out of solving this
problem will be a uniform digit recognizer. We would train a model
which can recognize digits across various domains that is irrespec-
tive of the background and environment we can identify numbers .
This would be very important in the current world with so many
different variants of digits existing across even related domains.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Machine Learning, Spring 2019, Gandhinagar, India
© 2019 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Figure 1: Domain Transfer Example

General domain transfer refers to mapping of samples from one
domain to a similar sample in another domain. One such exam-
ple is transferring digit images from Street View House Number
(SVHN) data set to MNIST[1] data set of handwritten digits. It is an
important problem in the field of machine learning and has various
practical applications.

To address this problem of generalized domain transfer we imple-
ment and analyse various modifications of the approach suggested
in "Unsupervised Cross-Domain Image Generation" [1]. We specifi-
cally explore two areas - Digit transfer (SVHN to MNIST and vice
versa) and Face Transfer (MS Celeb to Bitmozi). Thus, for any given
sample in source domain, S we aim to transfer the sample to a
similar target domain, T, in unsupervised fashion.
For this purpose , we use a modified architecture of GANs as pro-
posed in [2]. A feature representation of the input samples is given
as input to the GAN and it is trained with samples of target domains.

2 RELATEDWORK
The proposed architecture that the authors give is actually inspired
by the successful implementation of architecture by Radford et
al′s work where they propose DCGAN [3]. Another related work
is by Dosvitiskiy et al.[4], which works on a similar problem has
successfully mapped embedding to their pre-images, given source-
target pairs. This particular work has a GAN as well as additional

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Machine Learning, Spring 2019, Gandhinagar, India Girish Chandar G, S Deepak Narayanan, Sammed S Kagi, and Shivji Bhagat

losses, which has in part inspired the authors to employ a similar
loss function, with GAN and additional losses covering various
other constraints. [5] was a seminal work in understanding image
representations that are useful.

Figure 2: The proposed architecture

As the authors put it “As far as we know, the domain transfer prob-
lem we formulate is novel despite being ecological (i.e.,appearing
naturally in the real-world), widely applicable, and related to cog-
nitive reasoning (Fauconnier & Turner, 2003)." Therefore there is
no prior state-of-the-art method apart from [1].

Yet another motivation for this work has been from various dif-
ferent work in the domain on Image Style Transfer. This line of
research has focused on creating new images, while simultaneously
minimizing content loss with respect to one domain and style loss
with respect to the other. Here the word loss does not refer to the
loss used for optimization, but rather to the actual loss in terms of
content and style of the image. There are a lot of similarities be-
tween Style Transfer and the current work. Both are unsupervised
and generate a sample under a given constancy constraint. Image
style transfer tries to replicate the style of one or several images,
while this work considers a distribution in the target space.

3 DATASETS

Application Dataset Type of Images
Digit Transfer SVHN RGB

MNIST Grayscale
Face Transfer MS-Celeb RGB

Bitmoji RGB

The SVHN(Street View House Numbers), MNIST and MS-Celeb
datasets are readily available. The Bitmoji dataset needs to be gen-
erated by us. [4] is a re-implementation of the original work [1],
and the authors in [4] have generated the dataset for Bitmoji using
a specific method which is described in their report. We would
firstly like to contact the original authors regarding the dataset and
depending on their response, would generate them if needed, in
the same manner, used for generation in [4].

4 APPROACH
There are two domains, namely, the source domain s and the target
domain t . We need to generate samples in domain t corresponding
to samples in domain s . The domains in our case are images.
The authors approached the problem of unsupervised cross-domain
image transfer by a modified GAN architecture as shown in Fig-
ure 6.2. The blockG in the Figure 6.2 consists of two blocks, namely,
the feature encoder f and the generator д ,i.e, G = дo f .

In a traditional GAN implementation the input to the generator in a
random vector sampled from a prior distribution (eg. Gaussian dis-
tribution). But in the implementation proposed by the authors, the
input to the generator is a feature vector from the feature encoder f .

The feature encoder f is a part of a classifier pre-trained on the
source domain s . In general the feature encoder is the classifier with
the last fully-connected layer removed. Thus the feature encoder
outputs an n-dimensional feature vector which then would be given
as an input to the generator. For x ∈ s, t f (x) outputs the features
that best defines x .

Thus for x ∈ s, t G(x) = д(f (x)) outputs an image generated by the
generator block д with feature vector f (x) as input.

The discriminator D performs a ternary classification which the
authors claim to be robust as opposed to the discriminator of tradi-
tional GANs with binary classification. The discriminator D clas-
sifies its input image into one of the three classes: 1) Image from
source domain passed through generator, 2) Image from target do-
main passed through the discriminator, 3) Image from the target
domain.

The modified GAN implementation proposed by the authors em-
ploys additional loss functions to the generator apart from the
traditional GAN loss to impose extra constraints. The loss func-
tions associated with the generator are as follows:

LGANG = −
∑
x ∈s

logD3(д(f (x))) −
∑
x ∈t

logD3(д(f (x)))

LCONST =
∑
x ∈s

d1(f (x), f (д(f (x))))

LT ID =
∑
x ∈t

d2(x ,д(f (x)))

LT IV =
∑
i, j

(zi, j+1 − zi, j)
2 + (zi+1, j − zi, j)

2

• LGANG is the ordinary GAN loss where generator tries to
generator tries to create fake data and the discriminator tries
to decide whether its real or fake.

• LCONST helps in reducing the distance between the image
from the source domain and the generated image from the
source image in the feature space defined the feature encoder,
i.e., the LCONST makes sure that the features of the source
domain image and the generated image are similar. The

Unsupervised Cross-Domain Image Generation Machine Learning, Spring 2019, Gandhinagar, India

distance metric d1 is the l2 norm and cosine similarity for
digit transfer and face transfer respectively.

• LT ID enforces the identity mapping for images sampled
from the target domain. It ensures that for x ∈ s, д(f (x))
generates the image in the target domain t corresponding to
to x . The distance metric d2 is the l2 norm for both digit and
face transfer.

• LT IV is a smoothing loss enforced only for face transfer. This
loss improves the aesthetics of the image generated.

The generator loss LG is the sum of LGANG and the weighted sum
of LCONST ,LT ID and LT IV with weights α , β,γ respectively. In
the case of digit transfer γ is set to zero as we we do not impose
the smoothing loss in digit transfer. Therefore the final generator
loss is as follows:

LG = LGANG + αLCONST + βLT ID + γLT IV

The discriminator loss is sum of its ternary classification losses and
it is formulated as follows:

LD = −
∑
x ∈s

logD1(д(f (x))) −
∑
x ∈t

logD2(д(f (x))) −
∑
x ∈t

logD3(x)

Adam optimizer [6] is used as the optimization algorithm for the
entirety of the implemenetation

5 EXPERIMENTAL SETUP
5.1 Digit Transfer
As stated in the approach, the generator takes the feature encoded
inputs of the source domain samples and the target domain samples.
We trained our f starting from training a classifier of digits on the
SVHN dataset. The network structure of the classifier (f) consists
of four blocks of convolutional layers and a ReLU nonlinearity layer.
For the first three convolutional layers we used kernel size of 2 ,
padding of 1 and average pooling to shrink the size of the image,
with the number of filters equal to 64, 128, 256 respectively. For
the last layer, we use a kernel size of 4 with padding of 0 and num-
ber of filters equal to 128. This architecture gives us a 128 x 1 x 1
vector as a output. This is sent through a fully-connected layer to
shrink it to the output size of 10, the number of labels for the digits).

This classifier is then trained on the SVHN images. We obtain
an accuracy of 94%. We take the first 10 layers out of the 15 layers
as the f block in our digit model, so that is encodes the features
from the image. The output of this segment is a 128 x 1 x 1 vector.

The generator д maps f ’s feature vector to a 32 x 32 grayscale
image. д employs four blocks of transposed convolution, batch-
normalization and ReLU. The first layer has a kernel size of 4, stride
of 1, padding of 0, with the number of filters being equal to 512.
The remaining 3 layers have a kernel size of 4, stride of 2, padding
of 1 with number of filters 256, 128, 1 respectively. We add a Tanh
layer at the end to normalize д’s output between [-1,1].

The Discriminator D takes in the 32x32 image from the genera-
tor and returns 3 probabilities of the image belonging to each of
the three classes. D employs 4 blocks of convoloution followed by
batch normalization and Leaky ReLU. The first three layers have

kernel size 3, stride 2 , padding 1 and number of filters equal to 128,
256, 512 respectively and the last layer has a kernel size 4 and stride
2 and number of filters equal to 3.

5.2 Face Transfer
In the original paper, the network for face image transfer builds
upon the representation layer of the DeepFace [7] network for
the important f block, which is not publicly available. We were
therefore left to find a viable alternative to use for f . DeepFace is
trained by Facebook in house. The kind of scale and dataset that
Facebook has trained is impossible for us to do. This naturally made
our face transfer a much more harder problem to implement and
train. We were left with no option but to resort to open sourced
implementations of good facial feature encoders. We chose to use
SphereFace[8] as our representation layer. SphereFace was the more
viable open-sourced alternative that we had that was pre-trained.
The generator д and discriminator D were implemented following
the original paper.д takes in the feature vector from f and outputs a
64 x 64 RGB image. This image that we produce is upsamples using
bilinear interpolation. The interpolated image is finally upsampled
to a size of 96 x 96 and g containes 5 blocks, each containing stride
2, padding 1, kernel size 4 transposed convolution with number of
filters 512, 256, 128, 64, 32 respectively followed by batch normaliza-
tion and a ReLU. Another 1 x 1 convolution was added with stride
1, padding 0 and kernel size 1 after each block in an attempt to
lower final LCONST values. After these 5 blocks, a final transposed
convolution is performed with kernel size 4, stride 2 and padding 1,
followed by a Tanh output to normalize output between [-1,1].

Discriminator D similarly contains 5 blocks, each of which contain
a stride 2, padding 1, kernel size 3 convolution followed by batch
noralizaton and Leaky ReLU non-linearity with α = 0.2. The final
output is a convolution with 3 filters kernel size 3 stride 1. The
number of filters of the convolutional layers varies, but generally
the first convolution has few filters (32,62,128), which increased to
4 times more in the middle, then decreases to reach 3 in the output.

6 RESULTS
We successfully implemented the proposed Domain Transfer Net-
work in Google Cloud with 8 Intel CPUs and 1 NVIDIA Tesla P100
GPU.

6.1 Digit Transfer
6.1.1 SVHN to MNIST. We were successfully able to implement

the domain transfer network for SVHN-MNIST and our model out-
put images gave an accuracy of 77.6% on MNIST classifier. The
authors reported an accuracy of 90% in their paper. The final val-
ues for weights of the loss functions of our model are α = 0.001
β = 1000 γ = 0. The low value of α can be attributed to the perfor-
mance of the feature encoder. Since our SVHN classifier showed an
accuracy of 94%, the feature encoder was able to extract features
that define the image well.

6.1.2 MNIST to SVHN. The implementation of the domain trans-
fer network for MNIST-SVHN and our model output is displayed

Machine Learning, Spring 2019, Gandhinagar, India Girish Chandar G, S Deepak Narayanan, Sammed S Kagi, and Shivji Bhagat

Figure 3: SVHN to MNIST - Output Image of each layer of
the generator

Figure 4: Digit Transfer Generator and Discriminator Loss

below. We trained an MNIST classifier with 98.1%. We had to per-
form the same domain transfer, except for the following changes.
We have a new classifier, since the target and source domains have
now swapped. The up sampling that is performed using transposed
convolution in the generator now has to end with three channels,
since we are generating a RGB image from a grayscale image. Also,
the tradeoff hyperparameters are α = 0.001, β = 1000, γ = 0.

Figure 5: MNIST to SVHN - Output Image of each layer of
the generator

Figure 6: Face to Bitmoji - Output Image of each layer of the
generator

6.2 Face Transfer
The face transfer model that we implemented did not turn out to
be very successful. We were very often ending up in mode collapse
situation, with absolutely no resemblance of faces in some extreme
cases. Here we display the generation of a face from an input image.
The trade-off hyper-parameters α= 0.01, β = 100, γ = 0.0001.

Figure 7: Face Transfer Generator and Discriminator Loss

7 DISCUSSION AND CONCLUSION
• The digit transfer was successful but the face transfer did
not give satisfactory results.
– This problem might have been due to the reduced com-
plexity of the feature encoder of the faces since capturing
features of digits are far more easier than faces.

– The authors at Facebook AI Research had access to their
proprietary classifier which had been train their classifier
on 4 million images and thus their face encoder was able
to capture the features of the face images very well.

– In the future, by improving the face feature encoder, we
might be able to get better results.

• The image transfer is bi-directional, i.e., the domain transfer
network works with source and target domain swapped. We
have shown this conclusively by performing digit transfer
from SVHN to MNIST and also from MNIST to SVHN.

Unsupervised Cross-Domain Image Generation Machine Learning, Spring 2019, Gandhinagar, India

• Training a GAN was a very difficult process. Several times
we encountered mode collapse. During mode collapse GAN
rests in an local optima and thus the generator outputs the
same image independent of the input image. Figure 8 shows
a mode collapse example for digit transfer (8(a)) and face
transfer (8(b))

• Our entire code will be made available by May 4th 2019 on
GitHub, and we will share the link at that time.

(a) Digit Transfer (b) Face Transfer

Figure 8: Mode Collapse

REFERENCES
[1] Li Deng. The mnist database of handwritten digit images for machine learning

research [best of the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012.
[2] Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised cross-domain image

generation. arXiv preprint arXiv:1611.02200, 2016.
[3] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

[4] Alexey Dosovitskiy and Thomas Brox. Generating images with perceptual similar-
ity metrics based on deep networks. In Advances in neural information processing
systems, pages 658–666, 2016.

[5] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representa-
tions by inverting them. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 5188–5196, 2015.

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[7] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface:
Closing the gap to human-level performance in face verification. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 1701–1708,
2014.

[8] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song.
Sphereface: Deep hypersphere embedding for face recognition. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

	Abstract
	1 Introduction
	2 Related Work
	3 Datasets
	4 Approach
	5 Experimental Setup
	5.1 Digit Transfer
	5.2 Face Transfer

	6 Results
	6.1 Digit Transfer
	6.2 Face Transfer

	7 Discussion and Conclusion
	References

