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Major differences in the architectures Conclusions and Discussions
1. Training a GAN is a very difficult process. We
. had the issue of mode collapse multiple
e Input to the generator is the output of a times.
. 5 feature encoder unlike the standard GAN, to 2. Learning a feature encoder for a face is a

MS Celeb BI’[mOjI which the input is a noise vector. much more complex task than learning the

e Additional loss functions to impose feature same for a number.

e Given a sample in the SVHN Domain,
generate the corresponding MNIST

3. It was difficult for us to get visually pleasing

constancy and identity across domains
y y results for the face transfer model. Even after

e Constancy and ldentity ensure one to one

sample trying out multiple architectures for the
e Given a person's face, generate their correspondence S | generator and discriminator we couldn’t
corresponding Bitmoji sample e Usage of a ternary discriminative function generate realistic images, as we could, in the
digit transfer case.
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