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Abstract

Training a deep neural network from scratch requires huge amounts of computa-
tional power, especially in an area like computer vision where the dataset usually
contains more than ten thousand images. Moreover, availability of well-defined,
large scale, balanced dataset is a prevalent problem in computer vision which leads
to sub-par accuracy and a cumbersome pre-processing routines on the dataset. In
this paper we re-implemented the breakthrough technique called co-tuning which
cascades a neural-network for learning probabilistic relationship on top of a pre-
trained backbone network (ResNet50) to improve on the overall object detection
accuracy. We take a novel data-set called TACO and attempt to show that the
technique of Co-tuning can be implemented on top of transfer learning to improve
on object detection accuracy while at the same time keeping the total training time
minimal. Co-Tuning relies on the assumption that the pre-trained model is large
and diverse enough so that the methodology is generic and can be scaled to multiple
types of datasets without any loss of generality.

1 Motivation

Transfer learning is a technique introduced to overcome the tedious and computationally expensive
task of learning high number of parameters from the beginning and also providing a concession on
the size of dataset required to get a well-trained model with decent detection accuracy. Since Transfer
Learning uses pre-trained weights, to learn a good model, smaller dataset are sufficient since the
pre-trained model would have already learnt some representation of the image space and only minor
modifications might be required. in regards to optimization, initialization of weights of a model using
pre-trained is effective. Traditional transfer learning methods involve detaching and discarding the
last couple of layers of the pre-trained model and using only the remaining part to perform transfer
learning on a newer dataset. These last layers too contain pre-trained weights and formulating a way
to use them might speed up the transfer learning process while also making it more robust. You et al.
[2020] have tried and successfully tackled this problem.

2 Problem Statement

As described in Section 1, transfer learning has been a hot topic in recent times as scarcity of data for
training a deep neural network model is a prevalent problem. To overcome the drawbacks of small
datasets, transfer learning utilizes models pre-trained on larger datasets and fine-tunes the pre-trained
model by training them on the smaller dataset. In the field of computer vision, numerous models of
varied neural architecture are available that have been pre-trained on ImageNet [Deng et al., 2009]
such VGG [Simonyan and Zisserman, 2014], ResNet [He et al., 2016] and AlexNet[Krizhevsky
et al., 2012]. These pre-trained models are made readily accessible by libraries like PyTorch and
TensorFlow. General transfer learning algorithms. The previous works in the field of transfer learning
utilize only the bottom layers and discarding the top layers (task-specific layers) of the pre-trained
model. Referring to Table 1 provided by You et al. [2020], we can observe that discarding the
task-specific layers wastes almost 20% of the total parameters. You et al. [2020] have proposed a
method to overcome this drawback of traditional transfer learning and fully transfer the pre-trained
deep neural network models.
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Pre-trained model ResNet-50 DenseNet-121 Inception-V3 BERT-base
Task-specific parameters(∗106) 2.0 1.0 2.0 22.9
Total parameters(∗106) 25.6 8.0 27.2 108.9
Percentage(%) 7.8 12.5 7.4 21.0

Table 1: Pre-trained models parameter count

In general the dataset on which the pre-trained model was trained on and the dataset on which we
wish to perform transfer learning, share the same input space but might not have the same marginal
distributions. You et al. [2020] have proposed that by finding a probabilistic relationship between the
source domain categories and target domain categories, the pre-trained deep neural network model
can be used in its entirety. You et al. [2020] have claimed that their proposed Co-Tuning framework
improves the accuracy by upto 20%. We would be implementing their approach and verifying the
results and also report the performance of Co-Tuning transfer learning on TACO dataset published by
Proença and Simões [2020].

3 Related Work

3.1 Pre-trained Models

Computer vision has had a line of trailblazing architectures based on deep neural networks.
AlexNet(Krizhevsky et al. [2012]) was a GPU based architecture that surpassed basic feature-
engineering based models. ResNet(He et al. [2016]) eased the training of deep neural networks
by reformulating layers as "learning residual functions". Researchers have continually used such
models pre-trained on these architectures to achieve high accuracy in tasks pertaining to their specific
use-cases. More recently, Kornblith et al. [2019] shows that better the pre-trained model, better is the
performance of any transfer learning based architecture.

3.2 Domain Adaptation

Domain adaptation aims to solve the problem of classification using a similar idea. The key difference
between domain adaptation and transfer learning is that the source domain and the target domain have
to be in the same feature space in domain adaptation. This implies that the classification category
of both the domains needs to be the same. On the other hand, transfer learning allows for the two
domains to be in different category spaces. Moreover, in transfer learning it is not mandatory for the
training model to have both the datasets to be available at the time of training while that is not the
case with domain adaptation.

3.3 Fine tuning

In fine tuning, the model’s output is changed to fit the new task. Fine tuning allows for training
only the output layer of the original model. For example, projects in the Application track might
discuss relevant works on the dataset, similar analysis. Projects in the Open-ended track should
discuss relevant prior approaches and discuss how they are different from and related with your
method. Cetinica et al. [2018] explores applying finely tuned CNNs on art classification on 5 different
classification tasks belonging to similar classification domain i.e. artwork.

3.4 Continual Learning

Continual learning refers to updating the original model to include new tasks and type of datasets
it is able to classify, at the same time, keeping intact its ability to perform good on the original
task.You et al. [2020] refers to Kirkpatrick et al. [2017] which implements continual learning based
on a methodology called "elastic weight consolidation" which restricts the change in weights after
adding new tasks to the original model. You et al. [2020] claims that co-tuning performs better than
continual learning when it comes to the paradigm of transfer learning because it is better able to fit
the relationship between target and source domains.
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4 Method

4.1 Base transfer learning

Let Ds = {(xi
s, y

i
s)}

ms
i=1 be the source domain and Dt = {(xi

t, y
i
t)}

mt
i=1 be the target domain where

x is the input and y is the output category, hereafter referred to as source domain or target domain
category. Let f be the Deep Neural Network trained on the source domain. The traditional transfer
learning framework involves splitting f into representation function Fθ parameterized by θ and
task-specific function Gθs parameterized by θs. Traditional fine-tuning mechanism for transfer
learning only utilizes Fθ and discards Gθs . Let Hθt be the function that is introduced to replace Gθs
that outputs in the category space Yt of target domain. Introducing l(·) as cross-entropy loss we can
mathematically express the vanilla transfer learning process as follows:

(θ∗, θ∗t ) = argmin
θ,θt

1

|Dt|

mt∑
i=1

l(Hθt(Fθ(x
i
t)), y

i
t)

Similar to other machine learning techniques, to prevent the model from over-fitting, regularizers are
applied on this vanilla transfer learning formulation. Upon observation, we can see that the transfer
learning formulation does not utilize the entire pre-trained model. You et al. [2020] have proposed
an algorithm to modify the optimization function such that it is capable of fully transferring the
pre-trained deep neural network model.

4.2 Co-tuning methodology

The main idea of co-tuning is to find a probabilistic relationship between the source category space
Ys and the target category space Yt such as the conditional probability distribution: p(ys|yt), by
leveraging the fact that Gθs models the probability distribution over Ys. Essentially You et al. [2020]
have devised an algorithm to map the target domain category labels and the distribution of the source
domain category space. After estimating the conditional probability distribution we can alter the
transfer learning process by including the task-specific function of the pre-trained model Gθs as
follows:

(θ∗, θ∗t , θ
∗
s) = argmin

θ,θt,θs

1

|Dt|

mt∑
i=1

[l(Hθt(Fθ(x
i
t)), y

i
t) + λl(Gθs(Fθ(x

i
t)), p(ys|yt = yit))]

The paper proposes two ways to compute the relationship between the source categories and the
target categories, a direct approach and a reverse approach. Direct approach involves considering the
pre-trained model as a conditional probability distribution over the given input, i.e., f(x) ≈ p(ys|x).
Thus by using this notation we can formulate the direct approach as follows:

p(ys|yt = y) ≈ 1

|Dy
t |

∑
(x,yt)∈Dy

t

f(x), Dy
t = {(x, yt) ∈ Dt|yt = y}

The reverse approach involves using the pre-trained model f to calculate p(yt|ys) from (f(xt), yt)
and then estimating p(ys|yt) from p(yt|ys) using Bayes’s rule. You et al. [2020] have stated that
the direct approach is simple and straightforward but the reverse approach is more effective. The
algorithm for the reverse approach is as follows:

To calibrate the deep neural network, You et al. [2020] have used the method temperature scaling
as stated by Guo et al. [2017]. 2 describes the temperature scaling algorithm for calibration. Guo
et al. [2017] have observed that temperature scaling calibration method works surprisingly well for
ResNet [He et al., 2016] and DenseNet [Huang et al., 2017] on CIFAR dataset [Krizhevsky, 2009]
and ImageNet dataset[Deng et al., 2009]. You et al. [2020] advocate that the pre-trained model is
released with its corresponding calibration parameter.

Given that the calibrated pre-trained model is available, it is worth observing that the source domain
dataset is not required to estimate p(ys|yt). We only rely on the calibrated pre-trained model f̃ and
the target domain dataset Dt. Figure 1, taken from You et al. [2020], pictorially depicts the Co-Tuning
training process.
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Algorithm 1 Reverse approach to learn category relationship p(ys|yt)

Calibrate f according to Alg. 2 using Dv
s , where Dv

s = {(xi
s, y

i
s)}

mv
i=1 is the source validation data.

Let f̃ be the calibrated pre-trained model.
Estimate D̃t = {(f̃(xi

t), y
i
t)}

mt
i=1 from the the training data Dt = {(xi

t, y
i
t)}

mt
i=1.

Split D̃t into D̃train
t and D̃v

t (validation set).
Train a neural network g on D̃train

t to learn the mapping from calibrated source predictions to
target labels.
Calibrate g according to Alg. 2 using D̃v

t and let the calibrated model be g̃.
g̃(ys) approximates the probability distribution of yt conditioned on ys, i.e. g̃(ys) ≈ p(yt|ys)
Estimate the marginal probabilities of p(ys) and p(yt) from D̃t.
Estimate p(ys|yt) from p(yt|ys) using the marginal distributions p(ys) and p(yt): p(ys|yt) =
p(ys)
p(yt)

p(yt|ys)

Algorithm 2 Neural network calibration

Return calibrated function f̃(x) = f(x)/t∗ from f , where
t∗ = argmint>0

∑m
i=1 cross_entropy(softmax(f(x

i)/t, yi))

Figure 1: Co-Tuning training pipeline

5 Experiments

TACO dataset [Proença and Simões, 2020] was chosen to check the performance of Co-Tuning
algorithm. Similar to You et al. [2020], ResNet50 pre-trained model was used to implement the
co-tuning algorithm. We have referred to the code provided by You et al. [2020], for the co-tuning
algorithm, to build our code to implement co-tuning on TACO dataset. Therefore there are bound to
be some similarities between our codes. We have chosen a novel dataset not provided in the paper
since our implementation does not involve coding from scratch. The results for relationship learnt
between the TACO dataset and ImageNet dataset have been provided below along with the testing
accuracy of the fully transferred deep neural network on the TACO dataset. We tried to get the best
accuracy on relationship learning using multiple values of regularization parameter ‘C’. As shown in
Figure 2, the best accuracy was achieved for ‘C’ = 3 and the value was 52%.

Figure 2: Accuracy vs Regularization parameter
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5.1 Dataset

5.1.1 Overview

TACO (Trash Annotations in Context) [Proença and Simões, 2020], is an open source image dataset
consisting of annotated assorted varieties of waste in the wild. TACO dataset has been used for testing
the performance of Co-Tuning for the following reasons

• TACO is relatively new dataset. It is a novel dataset in the sense that not many models have
been developed and tested on it. This provides us the opportunity to explore more.

• You et al. [2020] have stated that co-tuning works best on small to medium scale datasets.
The dataset consists of 1500 images spread across 60 categories such as cigarettes, bottles,
cans, etc.

• This work on TACO dataset can be further extended to classification of recyclable and
non-recyclable wastes, which could help with waste segregation and categorization of litter
at waste management facilities. We believe that this work can contribute towards fixing this
ever worsening problem.

5.1.2 Challenges

Since much research has not been done on TACO dataset we were faced with a lot challenges and this
section explains a few of them and the solutions we employed to try and overcome those challenges.

(a) Single Image with multiple bounding boxes

(b) Super Categories in TACO dataset

Figure 3: The TACO Dataset

Most of the images in the TACO dataset contain multiple object(waste) in a single image as shown
in Figure 3a. Instead of working with multi-class multi label classification problem, we decided to
use the bounding box information in the annotation data to crop out the objects from images with
multiple objects and use them as separate images for training. Since TACO is relatively new dataset
and since we had to custom modify the images as mentioned above, a significant portion of effort
was focused on writing the dataloader function from scratch.

The dataset has ~30 categories which were highly imbalanced. As seen in Figure 3b, categories like
cigarette and plastic bottles have high number of images in them. This was natural since most of
the trash comes from plastic wastes. The dataset contained categories like "unlabelled litter" which
was ambiguous from object detection perspective. A number of categories strangely have few to
no images in them which was specially tricky for transfer learning since SKlearn’s implementation
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of logistic regression discards any category with no image in it. Since dataloading was random,
we frequently missed images from some of these categories, and even when we didn’t, some of
those categories had too few examples to be effectively used as training examples. To overcome this
obstacle we chose categories that were sufficiently defined, i.e., we chose the categories that had a
good enough number of images associated to them. We also discarded ambiguous categories like
"unlabelled litter".

5.2 Training

Pre-trained ResNet50 model readily available in torchvision.models was used in our implemen-
tation. The first 50 convolution layers were considered as Fθ and the last fully connected layer
was considered as Gθs , where Fθ and Gθs are representation function and task-specific function
respectively as defined in Section 4. In the code, Fθ and Gθs have been defined as ResNet50_F and
ResNet50_C respectively. Figure 4 shows the processes involved in co-tuning a pre-trained model.

Figure 4: Algorithm Flowchart

5.2.1 Data Pre-processing

As mentioned in Section 5.1.2, we had to write the dataloader function from
scratch. You et al. [2020] have used multiple image transforms while loading their
dataset but since TACO is new and was challenging to use as mentioned in Sec-
tion 5.1.2, we had to carefully analyze the transforms used by You et al. [2020]
and decided to use the following transforms: torchvisions.transforms.Resize()
torchvision.transforms.functional.crop(), torchvision.transforms.normalize()
and torch.type(FloatTensor). Despite the original paper using random cropping, we decided
not to use torchvision.transforms.RandomCrop() as the original dataset is already annotated
with bounding boxes, so all the relevant information is present over the entire image.

As explained in Section 5.1.2, the TACO dataset has multiple images with more than one object
in a single image. Thus as a pre-processing step, we decided to extract out the cropped image
from bounding box information provided in the annotated dataset. Furthermore, Since the bounding
box could vary in shape/size but the networks demands the image to be uniformly sized, we used
torchvisions.transforms.Resize() to resize the image into a fixed 256×256 size input. Since
we used to NumPy to load the images, the pixel values were integers in the range of 0 to 255, therefore
normalized each channel(R,G,B) between 0 to 1. The data is mean-normalised so as to be mitigate
the problems of a highly imbalanced dataset. Furthermore, we wrote from scratch a horizontal flip
transform so that the data could be as randomised as possible.

The final dataset that we created via extracting out individual images corresponding to each bounding
box contained 4000 images. This helped us in 2 ways:

• Increased the size of dataset enabling us to better train the model. This worked as a type of
dataset augmentation.
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Figure 5: Relationship learnt between TACO dataset and ImageNet dataset

• Cropped images from bounding boxes have content-to-noise ratio thereby helping making
the model learn better representations.

The overall dataset, after extracting bounding boxes from each image, was split into train, validation
and test sections, containing 3800, 200 and 113 images respectively, with the order of selection being
random.

5.2.2 Relationship training

A logistic regression classifier was implemented to model the relationship between the source domain
and the target domain. To find the best classifier parameter, we run an iterative loop on multiple
values of regularization parameter ‘C’. We find the best regularization parameter and use that for
our target category prediction. The model g as mentioned in Alg. 1 has been implemented using
SKlearn’s implementation of classical logistic regression trying to map the source logits Gθs(Fθ(x

i
t))

to target labels yit. Thus the model g has the logistic regression loss function as follows:

argmin
w,b

1

2
wTw + C

mt∑
i=1

log(exp(−yit(Gθs(Fθ(x
i
t))

Tw + b)) + 1)

6 Results

6.1 Learnt Relationship

The learnt relationship between the source domain labels and the target domain labels is in the form
of a probability distribution p(ys|yt). We visualize the learned relationship between the target domain
labels (TACO dataset) and the source domain (ImageNet) labels between 600 and 800 in the Figure
6. This matrix was used to convert a label in the TACO dataset to a probability distribution over
the ImageNet dataset, which was subsequently used as a target vector for training the ResNet50
classifier layer. Figure 5 shows the probability distribution of TACO dataset super categories "plastic
bag/wrapper" and "bottle" in the category space of ImageNet. We can observe that Alg. 1 is able to
capture the context of target categories allowing it map the target categories onto the source categories.
Hence we have verified the relationship learning aspect of the Co-Tuning algorithm proposed by You
et al. [2020].
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Figure 6: Relationship matrix visualization

6.2 Evaluation

First we evaluated the accuracy of the logistic regression model which predicted the source labels
from the target labels, which was found to be 58% on the training dataset and 52% on the testing
dataset. This relationship was computed without seeing any source domain data, and the relationship
was solely based on the information about the source dataset retained in the pre-trained ResNet model.
Finding this accuracy satisfactory, we moved on to training the co-tuning model which involved the
novel loss.

We were successful in modelling the relationship to a high accuracy given how imbalanced the data
was. Our expectation for correct relationship matching was from 40-50% given that a large number
of images belonged to some fixed number of categories. The final accuracy was a bit better than
what we expected. Further, as the next step we evaluated the accuracy of our complete model on a
training set of size 113, which was randomly sampled at the start of our training experiment. The
accuracy that we obtained with our network was 20.1%. We investigated into the possible reasons for
the low accuracy of the model, and found that the gradients of the model were stuck at zero due to the
presence of NaN values in the training flow. This could possibly be due to the high imbalance in the
target domain dataset, and also due to high variation in the training images for the same supercategory.
The training process can also benefit from being subjected to a broader range of hyperparameter
tuning range to investigate their effect on the training quality.

7 Conclusion

Co-tuning is a game changing technique given how mature deep neural networks are getting with
every passing day. Its usually quite cumbersome to model the network from scratch for a specific
task. With large networks (such as the ResNet50) which are already quite mature and accurate,
transfer learning makes practical sense in more applications than not specially in vision tasks like
object detection. Thus, novel research on improving object detection accuracy via transfer learning is
an active area of research where accuracy improvements are possible. Co-tuning is a step towards
that, and the novel implementation of probabilistic relationship generation already boasts good
improvements in detection accuracy on medium to large scale datasets. While we were unable to
achieve a good accuracy on the classification task for the TACO dataset, we were able to learn a
fairly useful and accurate relationship between the target dataset (TACO dataset) and the source
(ImageNet) dataset. Our results show that it is possible to augment low amounts of data effectively
through relationship learning. This also serves as evidence to the fact that the last layers of a large
pre-trained network can still be useful for establishing relationships with smaller datasets, indicating
their retention of information about the original dataset.
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9 Contributions

• Literature survey A1, A2 and A3 carried out the literature survey on the methods used
related to transfer learning jointly. A1 read the papers Kirkpatrick et al. [2017] and Huang
et al. [2017] to survey the latest techniques in continual learning. A2 and A3 studied the
latest research work in Cetinica et al. [2018] to explore other techniques as well. A1, A2
and A3 narrowed down on co-tuning as the approach to implement.

• Proposal Writing Proposal writing was done jointly by A1, A2 and A3. A1 wrote the related
works section after a knowledge transfer between the three of us. A3 was responsible for
methods sections, milestone setting and scheduling tasks.

• GitHub A1 created and maintained the GitHub repository and laid down the coding and
committing ethics related to our code.

• Dataset Loader Implementation A1 and A2 wrote the loader logic pertaining to the TACO
dataset. A2 came up with the idea of carving out the bounding boxes as individual images
and use them as the training inputs. A2 wrote the implementation for extracting out
supercategories and use those super categories instead of actual categories for classification.
A1 implemented the data transforms used for pre-processing the data (data resize, data
crop etc.) A2 worked on improving the dataloader implementation for better performance,
modularity and introduced methods to make it easier to debug.

• Checkpoint mechanism A1 wrote the module for model check-pointing and restoring. To
avoid multiple training cycles during testing of our implementation, it was required to write
a check-pointing mechanism to save on time.

• Relationship Learning Implementation A2 worked to understand and simplify the crux of
relationship learning and developed a plan of approach to code the network. A1 and A2
wrote the logic for the networks that learns the relationship between source categories and
target categories.

• Backbone Training A3 wrote the backbone ResNet architecture. A3 came up with the study
of how many layers of the ResNet50 backbone network need to be retrained.

• Experimentation The final experimentation on how to improve on the accuracy of overall
model was done jointly by A1, A2 and A3. A3 resolved one bottleneck when the model was
malfunctioning by not normalizing the image pre-processing layer to generate floats in the
range [0, 1].

• Final Project Report A1, A2 and A3 jointly created the final project report. A1 plotted the
hyperparameter tuning curve for relationship training, and together with A3 created the
flowchart model of the code. A3 created the visual interpretation of the relationship between
the TACO and the ImageNet dataset, while A2 captured the numerical qualities of the matrix
in the matrix visualization. Everyone worked on editing the final report.
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